
Effects of Bifurcations on Aft-Fan Engine Nacelle
Noise

Douglas M. Nark
�
, F. Farassat†, D. Stuart Pope‡, and V. Vatsa§

NASA Langley Research Center, Hampton, Virginia

Aft-fan engine nacelle noise is a significant factor in the increasingly important is-
sue of aircraft community noise. The ability to predict such noise within complex duct
geometries is a valuable tool in studying possible noise attenuation methods. A recent ex-
ample of code development for such predictions is the ducted fan noise propagation and
radiation code CDUCT-LaRC. This work focuses on predicting the effects of geometry
changes (i.e. bifurcations, pylons) on aft fan noise propagation. Beginning with simplified
geometries, calculations show that bifurcations lead to scattering of acoustic energy into
higher order modes. In addition, when circumferential mode number and the number of
bifurcations are properly commensurate, bifurcations increase the relative importance
of the plane wave mode near the exhaust plane of the bypass duct. This is particularly
evident when the bypass duct surfaces include acoustic treatment. Calculations involv-
ing more complex geometries further illustrate that bifurcations and pylons clearly af-
fect modal content, in both propagation and radiation calculations. Additionally, results
show that consideration of acoustic radiation results may provide further insight into
acoustic treatment effectiveness for situations in which modal decomposition may not be
straightforward. The ability of CDUCT-LaRC to handle complex (non-axisymmetric)
multi-block geometries, as well as axially and circumferentially segmented liners, allows
investigation into the effects of geometric elements (bifurcations, pylons).

I. Introduction

Aft-fan engine nacelle noise is a significant factor in the increasingly important issue of air-
craft community noise. The ability to predict such noise within complex duct geometries is a
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valuable tool in studying possible noise attenuation methods. A recent example of code develop-
ment for such predictions is the ducted fan noise propagation and radiation code CDUCT-LaRC.1

Previous aft-fan propagation calculations using CDUCT-LaRC have indicated that studying the
effects of bifurcation geometry and placement, as well as the use of segmented liners, may prove
to be a fruitful area of research for increased attenuation. Therefore, utilizing the capability within
CDUCT-LaRC to handle complex geometries, this work focuses on predicting the effects of ge-
ometry changes (i.e. bifurcations, pylons) on aft fan noise propagation. Noise propagation through
bypass duct geometries of varying complexity is studied. Enhancements to the post-processing
capabilities of CDUCT-LaRC provide some details into the predicted effects of the bifurcations.
In addition to attenuation prediction, modal decomposition functionality is also available. There-
fore, some quantification of bifurcation effects may be obtained through attenuation prediction and
decomposition into hard-wall duct modes.

Initially, results for straight, axi-symmetric ducts are presented to illustrate the use of the modal
decomposition functionality. Various bifurcation effects are illustrated through the use of the sim-
plified geometries with and without treatment. Subsequently, a bypass duct geometry similar to
that of a business jet, containing one internal bifurcation, is studied. Results for hard and soft-wall
bifurcations are presented. This is followed by the discussion of results for a larger commercial jet
engine geometry which incorporates an internal bifurcation, as well as a pylon that extends beyond
the exhaust plane of the bypass duct. Finally, concluding remarks are offered, along with further
areas of application and development.

II. General Bifurcation Effects and Modal Decomposition

Prior to studying more complex geometries, it is useful to attempt to identify some general
bifurcation effects using simplified cases. In this light, preliminary calculations were performed
using a straight annular duct geometry with two different internal configurations. The first con-
figuration, configuration 1, contains a single infinitely thin bifurcation in the middle third of the
duct. The second, configuration 2, incorporates a second lower bifurcation located 180 degrees
circumferentially from the upper bifurcation in the same axial position. The radial dimensions are
taken to be similar to those of a business jet engine with inner and outer radii of 0.28 m (11 in)
and 0.41 m (16 in), respectively. The ducts have an overall length of 1.09 m (43 in) and a uniform
background flow was prescribed

�
M � 0 � 4 � inside the duct since the flow is taken to be inviscid

and the bifurcations are infinitely thin. Another reason for the starting with a straight annular
geometry, and hence uniform flow, is to facilitate the decomposition of the propagation solutions
into hard wall annular duct modes. Straight-forward decomposition with non-uniform mean flows
may be ill-defined and may provide non-physical modal amplitudes. The uniform background flow
afforded by the straight geometry with infinitely thin bifurcations avoids this issue.
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A. Configuration 1

One point of interest is the change in modal content brought about by the bifurcations. Therefore,
propagation calculations were performed within configuration 1 with the acoustic source specified
as the (5,1) and (10,1) hardwall annular duct modes at the duct inlet with a source frequency of
3000 Hz. Initially, all surfaces were specified as hardwall and the resulting contours of the real
part of the acoustic potential are shown in figure 1.

(a) (5,1) Mode (b) (10,1) Mode

Figure 1. Real Part of Acoustic Potential - Configuration 1 [ f = 3000 Hz]

In this figure, the fluid flow and acoustic propagation are from right to left (i.e. the exhaust plane
is in the foreground). While the typical modal pattern is present, the effects of the bifurcation are
visible as the contours appear to show evidence of standing waves within the bifurcation region.
In an effort to verify this, modal decomposition may be employed at the exhaust plane to gain
some idea of the modal character resulting from the presence of the bifurcation. Decomposing the
propagation result into hardwall annular duct modes leads to figure 2.

The circumferential and radial mode numbers are on the x and y axes, respectively. The z axis
represents the amplitude of the acoustic potential normalized by its maximum value. It should be
noted that the radial mode numbering convention used in this work considers the first radial mode
to be one (i.e. n � 1). The plot contains the value n � 0 simply as a place holder for the plane
wave case (m � 0 � n � 0 � . Therefore, in all modal plots, the only non-zero amplitude at n � 0
will appear for the plane wave. Returning to figure 2, this plot shows that some acoustic energy is
transferred to circumferential modes rotating in the opposite sense to the input modes. In addition,
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(a) (5,1) Mode (b) (10,1) Mode

Figure 2. Modal Decomposition at the Exhaust Plane - Configuration 1 (Hardwall)

some acoustic energy is scattered to higher order circumferential and radial modes. Finally, a small
amount of acoustic energy in the plane wave mode may be noticed.

This analysis may be taken a step further by considering the fact that a bypass duct typically
includes treatment on the inner and outer walls. Also, as discussed by Dougherty,2 treatment on
the bifurcation surfaces may also be quite effective. Therefore, to gain a more realistic idea of the
relative amplitudes of the modes at the exhaust plane, acoustic treatment was applied to the surfaces
of configuration 1. As a baseline example, consider the inner and outer walls to incorporate a 1
inch deep single layer liner (reactance following cot

�
kL � relation) having a resistance of 1.0 ρc.

Since the bifurcations are infinitely thin, consider the bifurcation treatment to have a resistance
of 1.5 ρc and zero reactance. Propagation calculations were again performed for the (5,1) and
(10,1) hardwall duct modes with a source frequency of 3000 Hz. Attenuation calculations show
that the treatment is quite effective, with 20-25 dB attenuation in the two cases. This led to exhaust
plane modal amplitudes that were less than 10% of the hardwall cases. Contours of the real part of
acoustic potential are not included as the results are similar to those in figure 1 with the amplitude
decreasing in the propagation direction. Modal decomposition was also performed at the exhaust
plane of the bypass duct and the results are presented in figure 3.

In order to show relative levels more clearly, the amplitudes have again been normalized with
respect to maximum amplitude in the exhaust plane for each case. It can be seen from these figures
that the effectiveness of the liner in attenuating the higher order modes has brought the levels down
to the point at which the plane wave mode becomes more relevant. This seems feasible in that the

4 of 14

American Institute of Aeronautics and Astronautics



(a) (5, 1) Mode (b) (10, 1) Mode

Figure 3. Modal Decomposition at the Exhaust Plane - Configuration 1 (Treated)

plane wave mode is ’well cut-on’, thus providing the liner less opportunity for attenuation.
The radiation calculation module within CDUCT-LaRC may provide some further insight into

the changes in the acoustic solution brought about by the bifurcation. The acoustic radiation mod-
ule is based on a solution to the Ffowcs-Williams Hawkings equation with a penetrable data sur-
face. Currently, the exhaust plane of the bypass duct is used as the source plane. Radiation calcu-
lations were performed on a hemisphere of radius 1.91 m (75 in) centered on the duct axis in the
exhaust plane. Figure 4 shows the normalized radiated SPL on this hemisphere for the hardwall
and treated cases. In this figure, and radiation results to follow, the radiated SPL was normalized
with the respect to the maximum value obtained for the individual hardwall cases. Therefore, the
hardwall results will show maximum normalized values of 1 and the treated results generally have
maximum normalized values less than 1. In general, the effects of the bifurcation are clearly visible
in that the radiation pattern is considerably different than the symmetric ’bullseye’ pattern obtained
from an axisymmetric annular duct.1

B. Configuration 2

Noting the results for configuration 1, similar propagation, decomposition, and acoustic radiation
calculations were performed for configuration 2. The modal decomposition results with hardwall
internal surfaces for the (5,1) and (10,1) modes with a source frequency of 3000 Hz are shown in
figure 5. The results are similar to those shown for configuration 1 in that some acoustic energy
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(a) Hardwall (b) Treated

Figure 4. Normalized Radiation Patterns - Configuration 1 [(10,1) Mode]

appears to scatter into the higher order modes. Additionally, there is acoustic energy present in
circumferential modes rotating in the opposite sense to the input modes, as well as the plane wave
mode.

Modal decomposition for the treated case are shown in figure 6. As was the case for con-
figuration 1, the treatment was very effective as 20-25 dB attenuation was achieved. For this
configuration, it appears that (5,1) mode did not lead to a situation in which the plane wave mode
became as relatively important as in the (10,1) mode and configuration 1 results.

The analysis presented by Tyler and Sofrin3 may provide an explanation for this behavior.
Taking the source circumferential mode to represent the number of blades, b, and the number
of bifurcations to be the equivalent number of vanes, v. It can be seen that interaction between
the (5,1) mode and the two bifurcations to produce a zero order circumferential mode does not
appear. However, with the (10,1) mode, interaction to produce a zero order circumferential mode is
possible, as b � 5v � 10 � 5

�
2 ��� 0 � This approach may also explain the results for configuration 1

discussed earlier, as the number of bifurcations (v � 1) provides many opportunities for interaction.
Acoustic radiation calculations were also performed for comparison with configuration 1 re-

sults. The normalized radiation patterns in figure 7 again show considerable difference from the
symmetric pattern obtained from a straight axisymmetric duct. In addition, the radiation patterns
for configuration 2 show a different asymmetry than those of configuration 1. In this case, there
are two areas, near the top and bottom, in which the symmetry of the pattern has been disrupted.
This is in contrast to figure 4, in which the patterns show one large area of asymmetry.
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(a) (5, 1) Mode (b) (10, 1) Mode

Figure 5. Modal Decomposition at the Exhaust Plane - Configuration 2 (Hardwall)

(a) (5,1) Mode (b) (10,1) Mode

Figure 6. Modal Decomposition at the Exhaust Plane - Configuration 2 (Treated)
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(a) Hardwall (b) Treated

Figure 7. Normalized Radiation Patterns - Configuration 2 [(10,1) Mode]

Results up to this point have focused on the (5,1) and (10,1) modes specified independently.
To extend this analysis further, propagation calculations may be performed with multiple modes
specified as the acoustic source. Figure 8 presents results for the treated case with the (5,1), (5,2),
(10,1) and (10,2) modes specified with equal amplitudes. The figure also includes a treated case
with the (-5,1) and (10,1) modes specified with equal amplitudes.

Acoustic radiation calculations were performed and again the effects of the bifurcations are
clearly visible. Normalized radiation patterns for the (5,1), (5,2), (10,1) and (10,2) mode acoustic
source are presented in figure 9. The (-5,1) and (10,1) acoustic source results are also shown
in figure 10. Once again, there is a modification of the directivity pattern associated with the
interaction between the bifurcations and the modal content.

III. Internal Bifurcation

Having identified various general bifurcation effects within the straight annular ducts of con-
figurations 1 and 2, similar analysis may be turned to more realistic geometries. As a step in this
progression, consider the generic business jet engine geometry shown in figure 11.

The bifurcation was modeled as a NACA 0012 airfoil and the duct has inner and outer radii
of 0.305 m (12 in) and 0.391 m (15.4 in), respectively. In figure 11, the cross-section of the
bifurcation is visible to identify the location of the internal bifurcation. Contours of the real part
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(a) (5,1), (5,2), (10,1), and (10,2) Modes (b) (-5,1) and (10,1) Modes

Figure 8. Modal Decomposition at the Exhaust Plane - Configuration 2 (Treated)

(a) Hardwall (b) Treated

Figure 9. Normalized Radiation Patterns - Configuration 2 [(5,1), (5,2), (10, 1) and (10,2) Modes]
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(a) Hardwall (b) Treated

Figure 10. Normalized Radiation Patterns - Configuration 2 [(-5,1) and (10,1) Modes]

Figure 11. Generic Business Jet Engine Geometry
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of acoustic potential are presented for a (5,1), (5,2), (10,1) and (10,2) mode acoustic source in
figure 12. The mean flow module of CDUCT-LaRC was used to obtain the background flow with
an inlet Mach number of 0.4. While the typical modal pattern is present in portions of the duct,
bifurcation effects are visible as standing waves near the bifurcation region. The finite thickness of
the bifurcation and variable cross-sectional area of the duct lead to non-uniform mean flow in the
bypass-duct. As mentioned previously, this may cause difficulties for the application of straight
forward decomposition into hardwall annular duct modes. In light of this, modal decomposition
was not performed for this case. However, acoustic radiation results were obtained on a hemisphere
of radius approximately 5 duct diameters, centered on the duct axis in the exhaust plane. As seen
in figure 13, there is again asymmetry in directivity. However, this case also illustrates that radiated
pressure may provide insight into liner effectiveness in cases involving complex geometries and
non-uniform mean flow.

Figure 12. Real Part of Acoustic Potential - Business Jet (Hardwall) [(5,1), (5,2), (10,1), and (10,2) Modes, f =
3000 Hz]

IV. Internal Bifurcation with Pylon

As a final example in the progression toward more complex geometries, the Jet Engine Sim-
ulator (JES) of the Jet Noise Laboratory at NASA Langley Research Center, shown in figure 14,
was studied.

The pylon is clearly visible extending from the bypass duct, as well as the internal lower bifur-
cation. Figure 15 shows contours of the real part of acoustic potential for a (5,1), (5,2), (10,1) and
(10,2) mode acoustic source. The modal pattern is clearly affected, as acoustic scattering is evident
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(a) Hardwall (b) Treated

Figure 13. Normalized Radiation Patterns - Business Jet [(5,1), (5,2), (10, 1) and (10,2) Modes]

Figure 14. Jet Engine Simulator (JES) Geometry
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in the vicinity of the pylon and bifurcation. As seen in figure 16, associated radiation calculations
were also performed on a hemisphere of radius approximately 3 duct diameters, centered on the
duct axis in the exhaust plane. Note that these results incorporate the exhaust plane of the bypass
duct as the source surface. One possible approach to extending the propagation calculation to the
core cowl, and hence including more of the external pylon and core cowl effects on acoustic radia-
tion, is discussed in reference.4 However, this example illustrates the type of complex geometries
that one may attempt to study.

Figure 15. Real Part of Acoustic Potential - JES (Hardwall) [(5,1), (5,2), (10,1), and (10,2) Modes, f = 1600 Hz]

V. Concluding Remarks

This work has illustrated the use of CDUCT-LaRC to study the effects of bifurcations and py-
lons on acoustic propagation and radiation for geometries of varying complexity. In initial cases,
scattering of acoustic energy into higher modes was evident. In addition, the relative importance
of the plane wave mode was increased for treated cases with both one and two bifurcations. Calcu-
lations involving more complex geometries further illustrated that bifurcations and pylons clearly
affect the modal content, in both the propagation and radiation results. Additionally, these cases
showed that consideration of acoustic radiation results may provide some further insight into treat-
ment effectiveness for situations in which modal decomposition may not be straightforward. The
ability of CDUCT-LaRC to handle complex (non-axisymmetric) multi-block geometries, as well
as axially and circumferentially segmented liners, provides an opportunity to study the effects of
geometric elements (i.e. bifurcations, splitters) on fan noise. In addition, further validation looks
to the design and/or quantification of possible methods of achieving increased overall attenuation
in realistic geometries.
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(a) Hardwall (b) Treated

Figure 16. Normalized Radiation Patterns - JES [(5,1), (5,2), (10, 1) and (10,2) Modes]
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